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Abstract. The electromagnetic radiative correction to the cross section of the vector meson electroproduc-
tion is calculated. Explicit covariant formulae for the observed cross section are obtained. The dependence
of the radiative correction on the experimental resolution and on the inelasticity cut is discussed. The
FORTRAN code DIFFRAD, based on both exact (ultrarelativistic) and approximate sets of the formulae
for the radiative correction to the cross section, is presented. Detailed numerical analysis for kinematical
conditions of the recent experiments on the diffractive electroproduction of vector mesons is given.

1 Introduction

The measurement of the cross section of the exclusive vec-
tor meson electroproduction can provide information on
the hadronic component of the photon and on the nature
of diffraction. Over several years, the diffractive produc-
tion of the vector meson has been the subject of muon
production [1–3] and electroproduction [4–6] experiments.
Data analysis of these experiments is affected considerably
by QED radiative effects. In practice, the radiative correc-
tions (RC) to the processes of electroproduction are taken
into account by using codes originally developed for the
inclusive case (see [7], for example).

The purpose of this paper is to calculate the electro-
magnetic correction to experimentally observed cross sec-
tions for the kinematics of fixed target and collider ex-
periments directly. The Feynman diagrams necessary to
calculate RC are presented on Fig. 1.

In order to calculate exactly the QED RC to the cross
section of vector meson production, the method offered in
[8] is used. By exact formulae we mean the expressions for
the lowest-order RC obtained without any approximations
but ultrarelativistically: the lepton mass m is considered
to be small. In Sect. 2 the kinematics of the radiative and
non-radiative processes and exact formulae for the lowest-
order RC are obtained. In Sect. 3 the analytical results are
visualized by the construction of the approximate formu-
lae for cases interesting in practice. The numerical results
are given in Sect. 4. A brief discussion and conclusions are
given in Sect. 5.

2 Exact formulae
for the lowest-order correction

Seven kinematical variables are necessary to describe the
radiative process of diffractive vector meson production
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Fig. 1. Feynman diagrams contributing to the Born and the
next-order cross sections. The letters denote the four-momenta
of corresponding particles

(Fig. 1b,c). Four of them are the same as for the non-
radiative case: the usual scaling variables x and y, the
negative square of momentum transferred from the vir-
tual photon to the proton t = (q − ph)2 and the angle
φh between the scattering (k1,k2) and production (q,ph)
planes in the laboratory frame. The squared virtual pho-
ton momentum Q2 = −(k1 − k2)2 and the invariant mass
of the initial proton and the virtual photon W 2 = (p+q)2
are often used instead of x and y. The kinematics of a
real photon is described by three additional variables [9,
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10]: the inelasticity v = Λ2 − M2 (M is the proton mass
and Λ2 = (p′ + k)2 is the squared invariant mass of the
system of unobserved particles), τ = kq/kp and the angle
φk between planes (k1,k2) and (q,k).

We consider the RC to three- and four-dimensional
cross sections σ =d4σ/dxdy dtdφh and σ̄ =d3σ/dxdydt.
They are related as

σ̄ =

2π∫
0

dφh σ . (1)

The four differential Born cross section can be presented
in the form

σ0 =
α

4π2xy

(
y2σT + 2

(
1 − y − 1

4
y2γ2)(σL + σT )

)
,

(2)

where σT and σL are differential cross sections of the pho-
toproduction, γ2 = Q2/ν2 and ν is the virtual photon
energy.

The differential cross section of the radiative process
has the following form:

σR ∝ |Mb + Mc|2
4 k1p

dv
d3k

2k0
δ
(
(Λ − k)2 − M2) , (3)

where Λ = p + q − ph and Mb,c are matrix elements of
the processes given in Fig. 1b,c. In order to extract the
infrared divergence and form it into a separate term we
follow [8] and use the identity

σR = σR − σIR + σIR = σF + σIR, (4)

where σF is finite for k → 0 and σIR is the infrared diver-
gent part

σIR =
α

π
δIR
R σ0 =

α

π
(δS + δH)σ0. (5)

The quantities δS and δH appear after splitting the inte-
gration region over v by the infinitesimal parameter v̄:

δS =
1
π

v̄∫
0

dv

∫
dn−1k

(2πµ)n−4k0
FIRδ

(
(Λ − k)2 − M2) ,

δH =
1
π

vm∫
v̄

dv

∫
d3k

k0
FIRδ

(
(Λ − k)2 − M2) , (6)

where µ is an arbitrary parameter of the mass dimension,
vm is a maximal inelasticity and

FIR =
m2

(2kk1)2
+

m2

(2kk2)2
− Q2 + 2m2

(2kk1)(2kk2)
. (7)

The way to calculate integrals like (6) has been offered in
[8] (see also the review [11]). In our case we have

δS = 2
(

PIR + log
v̄

µM

)
(lm − 1)

+ log
S′X ′

m2M2 + Sφ,

δH = 2(lm − 1) log
vm

v̄
, (8)

where lm = log(Q2/m2). The quantities S′ = 2Λk1 =
S −Q2 −V1 and X ′ = 2Λk2 = X +Q2 −V2 are calculated
by using V1,2 = 2(a1,2 + b cos φh), where

a1 =
1

2λq
(Q2SpSt − (SSx + 2M2Q2)tq),

a2 =
1

2λq
(Q2SpSt − (XSx − 2M2Q2)tq),

b =
1
λq

(Q2S2
t − StSxtq − M2t2q − m2

vλq)1/2

×(SXQ2 − M2Q4 − m2λq)1/2. (9)

The invariants are defined as

S = 2k1p, X = 2k2p = (1 − y)S, Q2 = Sxy,

Sp,x = S ± X, St = Sx + t, tq = t + Q2 − m2
v,

λq = S2
x + 4M2Q2. (10)

The infrared terms PIR, parameters µ and v̄ and the
squared logarithms containing the mass singularity l2m are
completely canceled in the sum of δIR

R , with δV coming
from a contribution of the vertex function (Fig. 1d):

δV = −2
(

PIR + log
m

µ

)
(lm − 1)

−1
2
l2m +

3
2
lm − 2 +

π2

6
. (11)

For this sum we have
α

π
(δS + δH + δV) = δinf + δVR, (12)

where

δVR =
α

π

(
3
2
lm − 2 − 1

2
log2 X ′

S′

+Li2

(
1 − Q2M2

S′X ′

)
− π2

6

)
,

δinf =
α

π
(lm − 1) log

v2
m

S′X ′ . (13)

Here we used the ultrarelativistic expression for Sφ calcu-
lated in [12]. The higher-order corrections can be partially
taken into account by using a special procedure of expo-
nentiation of the multiple soft photon radiation. There is
an uncertainty: what part of δVR has to be exponentiated?
Within the considered approach [12] (1 + δinf) is replaced
by exp δinf .

For the observed cross section of the vector meson elec-
troproduction we obtain

σobs = σ0eδinf (1 + δVR + δvac) + σF. (14)

The correction δvac comes from the effects of vacuum
polarization by leptons and hadrons (Fig. 1e). The explicit
QED formulae for the first one can be found in [9]. The
hadronic contribution is given by a fit coming from the
data on e+e−→ hadrons [13].
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The contribution of the infrared finite part can be writ-
ten in terms of POLRAD 2.0 notation [9,10]:

σF = − α2y

16π3

2π∫
0

dφk

τmax∫
τmin

dτ

2∑
i=1

3∑
j=1

θij

×
vm∫
0

dv

f
Rj−2

( Fi

Q̃4
− δj

F0
i

Q4

)
, (15)

where R = v/f , f = 1+τ−µ and 2Mτmax,min = Sx±√
λq;

δj = 1 for j = 1 and δj = 0 otherwise.
The quantities θij depend on only the kinematical in-

variants and the integration variables τ and φk :

θ11 = 4Q2F 0
IR,

θ12 = 4τF 0
IR,

θ13 = −2(2F + Fdτ
2),

θ21 = 4(SX − M2Q2)F 0
IR, (16)

θ22 = −FdS
2
pτ + F1+SpSx + 2F2−Sp

−4F 0
IRM2τ + 2F 0

IRSx,

θ23 = 4FM2 + 2FdM
2τ2 − FdSxτ − F1+Sp,

where

Fd =
F

z1z2
, F1+ =

F

z1
+

F

z2
, F2± = F

(
m2

z2
2

± m2

z2
1

)
, (17)

F = 1/(2π
√

λQ) and F 0
IR = F2+ − Q2Fd = FIRR2. The

quantities µ = kph/kp = 2(ak+bk cos(φh−φk)) and z1,2 =
kk1,2/kp = 2(az

1,2 − bz cos φk) include the dependence on
angles:

az
1 =

1
2λq

(Q2Sp + τ(SSx + 2M2Q2)),

az
2 =

1
2λq

(Q2Sp + τ(XSx − 2M2Q2)),

ak =
1

2λq
((2Q2 + τSx)Sm − (Sx − 2τM2)tq),

bz =
1
λq

(SXQ2 − M2Q4 − m2λq)1/2

×(Q2 + τSx − τ2M2)1/2,

bk =
1
λq

(Q2S2
m − SmSxtq − M2t2q − m2

vλq)1/2

×(Q2 + τSx − τ2M2)1/2. (18)

Here Sm = St − v.
The dependence on the photoproduction cross sections

is included in Fi:

F1 = (Sx − R)σR
T , F2 =

2Q̃2

Sx − R
(σR

T + σR
L ),

F0
1 = SxσT, F2 = 2x(σT + σL).

(19)

The quantities σT,L have to be calculated for Born kine-
matics, but σR

T,L is calculated in terms of so-called true

kinematics. It means that they have to be calculated for
the tilde variables

Q̃2 = Q2 + Rτ,

W̃ 2 = W 2 − R(1 + τ),
t̃ = t + R(τ − µ) (20)

instead of the usual Q2, W 2 and t.
The important point is the dependence of the results

on the maximal inelasticity vm. The inelasticity is calcu-
lated in terms of the measured momenta, so it is possible
to make a cut on the maximal value of this quantity. If
this cut is not applied the maximal inelasticity is defined
by kinematics only. Below, we give the formulae for vm in
terms of the kinematical invariants,

4Q2vm =
(√

λq −
√

t2q + 4m2
vQ2

)2

−(Sx − 2Q2 + tq)2 − 4M2Q2, (21)

and in terms of kinematical limits on t,

vm =
1
C

(tmax − t)(t − tmin), (22)

where C behaves for small t as

C =
Q2 + m2

v

2W 2

(
Sx +

√
λq

)
+ O(t). (23)

The maximal inelasticity given by kinematics is plotted in
Fig. 2 in the kinematical points close to experiments on
fixed targets. For collider experiments the shape of vm is
similar. The position of the peak and its maximum value
are calculated as

tpeak = −mv

W
(Sx − 2Q2),

vm(tpeak) = (W − mv)2 − M2. (24)

3 The approximation

The structure of the exact formulae for the cross section
of the hard bremsstrahlung σF obtained in the last section
is not simple. Here we analyze them under approximation.
The third integration variable v is not a completely pho-
tonic one. It is calculated from the measured momenta of
the final lepton and the vector meson. For non-radiated
events v ≡ 0. In practice, however, the distribution over
v has a Gaussian form due to the finite resolution. Ra-
diative effects also affect the distribution (see Sect. 4.3).
So a cut on the invariant mass of the unobserved system
rejects events with hard radiated photons and helps to re-
duce the total RC. Below, we consider the approximation
based on the assumption that vm is relatively small or a
kinematical cut on v is used. Also, for diffractive scatter-
ing the squared momentum t transferred to the hadronic
system is always small, so we construct the approximate
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Fig. 2. Maximal inelasticity for ρ(770) electroproduction. The
dashed line gives a possible cut

formulae for RC to the cross section d3σ/dxdydt with an
additional assumption

M2 � S, t � Q2. (25)

It is clear that this condition is normal for the collider
experiments but it is often not so bad for fixed target
experiments as well. Due to the smallness of vm we can
keep only leading terms in the expansion of the integrand
(15) over v. The first non-vanishing term contains the first
derivative of the integrand. The main contribution to this
derivative comes from the factor exp(bvt) (bv is a slope pa-
rameter), which describes the slope of the observed cross
section with respect to −t in most models of σL,T. It is
not difficult to keep all the contributions to the deriva-
tive but for simplicity we restrict our calculation to this
contribution. In this case

1
v

(
Q4

Q̃4

Fi

F0
i

− 1
)

≈ bv
τ − µ

1 + τ − µ
(26)

and it is possible to integrate over φh, φk and τ explicitly:

1
2π

2π∫
0

dφh
τ − µ

1 + τ − µ
≈ Q2 + m2

v

Sx − Q2 − m2
v

,

2π∫
0

dφk

τmax∫
τmin

dτF 0
IR = −2 (lm − 1) . (27)

The final result for σ̄F (see (1)) is simply

σ̄F =
2αbvvm

π
(lm − 1)

Q2 + m2
v

Sx − Q2 − m2
v

σ̄0. (28)

Apart from a simple analytical form, the formula ob-
tained has one more advantage. The correction depends

−t,GeV2

η

without cut on vm

vm=15GeV2

0.4
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0.9
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10
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Fig. 3. RC factor (29) for ρ(770) electroproduction calculated
with exact (solid line) and approximate (dashed line) formulae
within the kinematical conditions of the HERA collider exper-
iment;

√
S = 300 GeV, Q2 = 3 GeV2, W 2 = 5000 GeV2.

on only the kinematical variables, not on the dynamical
characteristics of the interaction, σT and σL. It allows a
possible systematical error coming from the choice of the
model to be eliminated. Such systematics could be large
because we have to know the differential cross sections σT
and σL in the varying wide region of four variables, but
there are neither enough experimental data for that nor
satisfactory models. Using (28) we have systematics com-
ing from the approximate formulae instead of exact ones.
But we are able to control it by comparing the values cal-
culated from (15) and (28) by using any model.

Moreover there is the possibility to provide the ‘event
by event’ procedure, reweighting each event with the RC
factor. The comparison of the results for the cross sections
with and without this reweighting gives the correction.

Figure 3 demonstrates the accuracy of the constructed
approximation with and without using the cut on inelas-
ticity. For small values of −t the exact and approximate
results are in agreement for both cases; however, in the
case of large −t (−t ∼ 0.1GeV2) the approximation can
be used only along with the cut.

4 Numerical analysis and the code DIFFRAD

In this section we present the FORTRAN code DIFFRAD,
which was created on the basis of the exact formulae in
Sect. 2. The program calculates the lowest-order RC to the
diffractive vector meson electroproduction. The higher-
order effects are approximated by the procedure of ex-
ponentiation. The formulae for the cross section are given
in a covariant form, so the code can be run both for the
fixed target experiments and for the experiments at the
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Fig. 4. RC factor for ρ(770) muon production under the kine-
matical conditions of EMC/NMC;

√
S = 19.4 GeV; 〈W 2〉 =

210 GeV2. No cut on inelasticity is used

collider. The model for σL,T presented originally in [14]
and developed in [15] is used as an input.

Below we give numerical results for the RC factor

η =
σ̄obs

σ̄0
=

2π∫
0

dφhσobs

2π∫
0

dφhσ0

(29)

and t and v distributions obtained within the kinematical
regions of recent experiments on the leptoproduction of
vector mesons.

4.1 RC to the cross section

In Fig. 4 one can see Q2 and t dependences of the RC
factor η in the kinematical region of the EMC and NMC
experiments. There is no cut on inelasticity used. For high
values of t the RC can reach a factor of two. The reason
for such a large effect is the smallness of the Born photo-
production cross sections σL,T. They fall as exp(bvt). In
the observed cross section this factor is in the integral and
there is a contribution from the region on t where σL,T are
not so small. As a result σobs falls with the increasing −t
but not so fast.

Figure 5 gives the results for η within the kinematics
of the experiment E665 with a cut on the inelasticity. Note
that it can be done because of the rather good resolution
over v (standard deviation σ of its distribution is smaller
than the vm given by kinematics). Use of this cut leads to
different behavior of η as a function of Q2. The different
plots on this figure give the W 2 dependence of η.

The dependence of η on the kinematical variables Q2

and t in the region of the collider experiments at HERA is
presented in Fig. 6. No cut on inelasticity is used, so the

W 2 = 100GeV2 W 2 = 200GeV2

W 2 = 400GeV2 W 2 = 600GeV2

Q2,GeV2Q2,GeV2

Q2,GeV2Q2,GeV2

Fig. 5. RC factor for ρ(770) muonproduction under the kine-
matical conditions of E665 using a cut on maximal inelasticity
vm = 15 GeV2.

√
S = 30 GeV. Curves from top to bottom

correspond to t = −0.9, -0.5, -0.1 GeV2

η

W 2 = 5000GeV2

Q2,GeV2
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4

5 10 15 20 25 30 35 40 45 50

Fig. 6. RC factor for ρ (770) electroproduction under hte kine-
matical conditions of collider experiments at HERA;

√
S = 300

GeV. Symbols from top to bottom correspond to t = −0.7, -
0.5, -0.3, -0.1 GeV2. No cut on inelasticity is used

Q2 dependence is similar to one given for the EMC/NMC
experiment. It is found that the RC factor η is not sensitive
to W 2. This is due to the fact that the photoproduction
cross section is almost flat in the kinematical region of the
collider experiments.

The dependence on the vm cut in the region of HER-
MES kinematics is analyzed in Fig. 7. Use of the cut
changes the RC factor for small Q2 and does not influence
it for larger values of Q2, which can be seen in Fig. 2. In
the case of cut usage we have to define vm as the mini-
mum value of the cut and the vm given by the kinematical
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Fig. 7. RC factor ρ(770) electroproduction under the kinemat-
ical conditions of HERMES.

√
S = 7.9 GeV, t = −0.11 GeV2,

〈y〉 = 0.55

−t,GeV2

σ, mb

1

10

10 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 8. The Born (dashed) and observed (solid) cross sections
of ρ(770) muonproduction with respect to −t.

√
S = 30 GeV,

Q2 = 2 GeV2, W 2 = 200 GeV2. No cut on inelasticity is used

restrictions (21). For fixed values of −t the cut influences
vm and RC up to certain value of Q2 only.

4.2 t distribution

The radiative effects can influence the slope of the ob-
served cross section with respect to −t because of the de-
pendence of RC on this variable. It is illustrated in Figs. 8
and 9. The Born and observed slopes are calculated as a
first derivative over t of the logarithm of the Born and ob-
served cross sections. The t dependence of the Born cross
section within the model of [14,15] is basically defined by a
two-gluon form factor taken in exponential form, exp(bvt)

−t,GeV2

bv,GeV−2

4

4.5

5

5.5

6

6.5

7

7.5

8

0 0.1 0.2 0.3 0.4 0.5

Fig. 9. Slope parameter for ρ(770) muonproduction with re-
spect to −t.

√
S = 30 GeV, Q2 = 2 GeV2, W 2 = 200 GeV2.

vm = 15 GeV2

with bv = 5 GeV−2. We note that the slope of the Born
cross section is about 6.5–7.5 GeV−2 in Fig. 9 and is not
equal to bv exactly. This is due to the dependence on the
transverse momentum of the vector meson p2

t ≈ −t (see
(2-4) in [15]).

Taking RC into account leads to a reduction in the
slope of the observed cross section of the order of 10%.
An additional dependence on t in the case of RC comes
basically from vm, which is proportional to t − tmin in the
diffractive region of small −t. Owing to this fact, both the
exponent exp(δinf ) and the cross section σF tend to zero
when t → tmin. So the observed cross section vanishes in
this limit.

4.3 Inelasticity distribution

In this section we discuss influence of RC on the inelastic-
ity distribution. There are several reasons for the inelas-
ticity to be non-zero: the finite experimental resolution,
radiative effects and the mixture of non-exclusive inelastic
events. The last of these is usually suppressed by experi-
mental methods, and we neglect it here.

Inelasticity v is calculated in terms of the momenta of
the final lepton and vector mesons, which are experimen-
tally measured. The Born cross section does not depend
on inelasticity, so the inelasticity distribution is a pure
Gaussian with a mean value equal to zero and a stan-
dard deviation σ defined by the experimental resolution.
However, since there is v dependence in the RC (see the
integrand of (15)) the observed inelasticity distribution
deviates from simple Gaussian form. To see the difference
we generate the Born and observed inelasticity distribu-
tions (see Fig. 10). The first one is generated as a pure
Gaussian (solid line). The following procedure is applied
for the generation of the observed distribution. First, the
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Fig. 10. Inelasticity distributions for ρ(770) electroproduction:
Born (line) and radiatively corrected (circles);

√
S = 7.9 GeV,

x = 0.01, y = 0.75, −t = 0.15 GeV2, σ = 0.7 GeV2, vm =
2GeV2

type of process being radiated or non-radiated is gener-
ated in accordance with their contributions to the total
observed cross section. The non-radiated events include
Born processes, loop effects and the radiation of soft pho-
tons, whose energy does not exceed one standard deviation
σ of the Born distribution. They do not change the kine-
matics of the Born process, so their inelasticity distribu-
tion is generated in accordance with the Gaussian distri-
bution as well. Inelasticity of radiated events is generated
in according to dσf/dv in the region σ < v < vm with
smearing of each generated v over the Gaussian distribu-
tion with a standard deviation equaling σ. The observed
distribution is presented on Fig. 10 (closed circles).

5 Discussion and conclusion

In this article, the QED radiative effects have been an-
alyzed in kinematics of recent experiments on the exclu-
sive vector meson electroproduction. The explicit covari-
ant formulae for RC to the cross section are given in (13–
15). An approximate expression for the bremsstrahlung
cross section can be found in (28).

The RC to the cross section of the diffractive vector
meson electroproduction is very sensitive to the cut on the
inelasticity. Using a harder cut leads to smaller values of
the RC factor.

In the diffractive region (−t < 0.3) RC is negative and
can reach

– 10% for muon experiments with fixed target,
– 20% for electron experiments with fixed target,
– 40% for electron collider experiments.

This large effect comes basically from a double loga-
rithmic contribution in δinf (13). For example, for collider
kinematics both its logarithms exceed 10, and δinf can
reach 0.5.

There is no essential dependence on the type of vector
meson. All the numerical results are given for the case
of ρ meson production. The dependence on the type of
scattered lepton is typical. RC in the case of the electron
scattering is several times larger due to the appearance of
the lepton mass in the argument of the leading logarithm.

The Born cross section has a steeper slope with respect
to t than the observed cross section does. The RC to the
slope parameter is negative and about 10%.

The FORTRAN code DIFFRAD is available
(aku@hep.by) for the calculation of the RC to observable
quantities in experiments on the diffractive vector meson
electroproduction.
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